a2 United States Patent

Srivastav et al.

US009223517B1

US 9,223,517 B1
Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

SCALABLE INDEX STORE

Applicant: EMC Corporation, Hopkinton, MA
(US)

Shashwat Srivastav, Seattle, WA (US);
Vishrut Shah, Redmond, WA (US);
Sriram Sankaran, Bellevue, WA (US);
Jun Luo, Bellevue, WA (US); Chen
Wang, Shanghai (CN); Huapeng Yuan,
Seattle, WA (US); Subba R.
Gaddamadugu, Worcester, MA (US);
Qi Zhang, Redmond, WA (US); Jie
Song, Shanghai (CN); Andrew D.
Robertson, Washington, DC (US); Peter
M. Musial, Arlington, MA (US)

Inventors:

Assignee: EMC Corporation, Hopkinton, MA

(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 160 days.

Appl. No.: 13/886,892

Filed: May 3, 2013

Int. CI.

GOG6F 3/06 (2006.01)

U.S. CL

CPC ..o GOG6F 3/067 (2013.01); GOGF 3/0689
(2013.01)

Field of Classification Search

CPC i GOG6F 3/0689; GOGF 11/1076

USPC e 711/114

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2013/0103729 Al* 42013 Cooneyetal. 707/831

2014/0115579 Al* 42014 Kongccoovvveiviiniinns 718/1

2014/0156618 Al* 6/2014 Castellano 707/703

2014/0361808 Al* 12/2014 Friedmanetal. 326/38
OTHER PUBLICATIONS

DeCandia et al, Dynamo: Amazon’s Highly Available Key-value
Store, SOSP *07, Oct. 2007, pp. 205-219.*

Karamanolis, Christos, A Preview of Distributed Storage, VMware,
2012.%

Bandulet, Christian, Object-Based Storage Devices, Oracle Technol-
ogy Network, 2007.*

Lakshman et al, Cassandra—A Decentralized Structured Storage
System, ACM SIGOPS Operating Systems Review, Apr. 2010.*

* cited by examiner

Primary Examiner — Aimee Li

Assistant Examiner — Edmund Kwong

(74) Attorney, Agent, or Firm — Krishnendu Gupta; Joseph
D’ Angelo

(57) ABSTRACT

A method, system, and computer program product for pro-
viding, via a provisioning engine, a scalable set of indexed
key-value pairs enabled to store objects in a data storage
environment; wherein the data representing the objects is
enabled to be spread across arrays in the data storage envi-
ronment; wherein additional arrays are enabled to be added to
the data storage environment and included in the indexed
key-value pairs; wherein the data stored across the arrays may
be balanced.

19 Claims, 32 Drawing Sheets

Indexing System 125

Locking Service 112

Database 110

Storage pool 114
| Gold 116 | | Bronze 118 |

Node 130 Node 132

Object&Index sys

Node 134 | Node 136
Object&Index sys

Object&Index sys

Site 105

Gold

Bronze Gold
Bronze Gold Platinum
Afray Array Array
135 140 145

Gold Bronze Bronze
Platinum || Gold Gold
Array Array Array
185 180 190

US 9,223,517 B1

Sheet 1 of 32

Dec. 29, 2015

U.S. Patent

06T 08T G8T
Aedy Aeaay Aedy
PICS PIOD || wnulle|d
azuo.g azuo.g p|oD

SyT ovT GET
Aevy Aedsy Aedy
wnune|d ¢][e]5) azuoJig
PIOD 9zuoJg PIOD
!
SOT 9US

N

SAs xm_,oc_dwpuw._o_o

9€T 3pON

SAs xm_oc_dwpuw._n_o
¥ET 9PON

SAS xapu|129(q0
TET 9PON

SAs xm_oc_“wpuw.ao
OET 9PON

T 24n314

1T 2zuo.g

91T P|0D

11 |ood 98el01s

1T 9seqgeleq

7

1T mu_>hmm gunpon

e

ZT WasAS Suixapuy

US 9,223,517 B1

Sheet 2 of 32

Dec. 29, 2015

U.S. Patent

067 08¢ S8C S6¢ S¥T ove SeC
Aedry Aedy Aedly Aely Aeary Aedy Aey
p|0oD ploo || wnuie|d Qzuolg wnuile|d p|oD azuo.g

azuo.g azuoug p|oS ¢][e]5) p|0D azuo.g p|0D

N

2 TN

S0¢ =24S

sAs xapu|g123[qO

9€C 3PON

SAs xapu|g123lqO
¥ET @pON

sAs xapu|g123[q0
TET @PON

SAS xapu|123[q0
0€T @pON

Z 24n8i4

0TZ 921AJS UIY207

B

E
,,,,,,

e

7T Wo1SAS Suixapu|

U.S. Patent Dec. 29, 2015 Sheet 3 of 32 US 9,223,517 B1

Figure 3

Register array 310

Add new array 305

US 9,223,517 B1

Sheet 4 of 32

Dec. 29, 2015

U.S. Patent

06%
Aedry

PIOD

azuoJig

L7 }JOMISN

08y S8y — Sty ovy SEY
Aeday Aesay 9%y |euinor |7 Aesry Aedry Aeday
ploo || wnuneld YrrOSTa I Winunerq ploo || ezucig
L
azuo.g Jeb) Niu\ o][s]5) azuo.g p|0D
/ elepeldN [7
- c@tmmﬂ
SO 2MS

9¢y uonnJied

¢y uonilied
7 |00d 23e.01s p|oo

¥ 24ndi4

sAs xopu|g123lq0 R sAs xapu|m103lqO | sAs xepu|x103lqQ | sAs xapu|g123lqO
3Ev opoN / PEV opoN ZEv opoN 0¥ apoN
0T 921AJ9S UIY20T Q7P WalsAS uixapu

U.S. Patent Dec. 29, 2015 Sheet 5 of 32 US 9,223,517 B1

Figure 5

Commit journal to B+ tree 510

Log writes in journal 505

US 9,223,517 B1

Sheet 6 of 32

Dec. 29, 2015

U.S. Patent

589
Aedly

069 089
Aevy Aeaay
PIOD PIOD

azuo.g azuoJg

wnupeld

PICS

/79 NI0MIaN

L 59 o%9 589
| 9%9 Jeusnorpjo] Aenry Aenry Aediy
b A 7

qq/,ﬁetmmo wnuneld ploo || zuoug
7o 1 Poo szU0Ig pIOD

/ erepelda | =7 7

- co_vtmmﬂ 759 [euinof
€v99all+d

509 o115

9¢9 uonilied
¥¢9 uoillied
79 |0ood 238e101s p|oo

9a4ndi4

sAs xapu|R123lqo A sAs xepug10alqO || sAs xepu|123lqQ || sAs xepu|g133lqO
9€9 apoN ¥€9 apoN TE€9 3pON 0€9 8poN
0T9 921AJ2S U207 GZ9 W1SAS Suixapuy

US 9,223,517 B1

Sheet 7 of 32

Dec. 29, 2015

U.S. Patent

£ aIn3i4

OTZ 9341 pue |[euInof A0\

!

SOZ [In} Aeday 9j14 dulwILlaQ

US 9,223,517 B1

Sheet 8 of 32

Dec. 29, 2015

U.S. Patent

068
Aely

PIOD

azuoig

088
Aeay

PIOS

688
Aevy

azuoJg

wnuield

PIOD

/78 IoMIgN

Sv8
Aedy

wnune|d

PIOD

ovs8 Ge8
Aesry Aesuy
o][e]5) azuoug
azuoug p|0D

S08 91S

z uonnJed
(¥ yseH) T uoiined
778 |0od 33eI03S PI0D | | ST8 v 13[q0
SAS XIpuTRIISIgu SIS X3PUTRIISY Sis XIpugIze(qO | SAsS xepu|g129lqo
9€8 3pPON 7€8 apoN TEQ 3PON 0€8 pON

g aingi4

0T8 221A9S Suyd0T]

GZ8 Uia1sAs Suixapu|

7

Q18 (P109:50D) v 193[00

US 9,223,517 B1

Sheet 9 of 32

Dec. 29, 2015

U.S. Patent

6 3In314

76 |euanol ul pJoday

+

—L
076 Aesie 01 1ussS

*

ST6 Aeule aujwlala(

%

€16 9pOU BUIWIS1RQ

I |

T16 UonIled 2Ulwl1aQ

t

T16 yseH a1e[najed

%

0T6 AeJae UO UILIIM B1EP UOIEI0| pUI

%

606 Aedue 01 e1ep 129[qo 21UM

ﬁ

206 Aeuie sulwialaQ

/06 |00d 33eJ01s auiwJia19Q

G06 159nbau aA1209Yy

US 9,223,517 Bl

Sheet 10 of 32

Dec. 29, 2015

U.S. Patent

060T 080T G801 Sv0T 0v0T Ge0t
Aesly Aeday Aeday Aelly Aeaay Aeday
pI0D pIoD || wnuneld wnuneld ploo || ezuoig
azuoug azuoug P|oD WJ[el5) azuoug WJ[el)
1 € UOIHTIEd 70T YJ0MIBN S00T 34S
(d)yseH Z uonled
T UOTHHEd
70T |ood a3e101S azuoug GZ0T g109[q0
SIS XIPUTRIISTIU = SAS XapUTgIIggu [SAs XopuTyiralqo wac_uwuuwBO
9¢0T °PON 7€0T 9PON ¢€0T °PON om0ﬁ 9PON

a 92IAIBS WC_V_UO|_

QT =4 Jm_n_

STOT (9zU04g:50D) g 193[q0

US 9,223,517 B1

Sheet 11 of 32

Dec. 29, 2015

U.S. Patent

0671 0817 S8TT SY11 orit GETT
Aelly Aevy Aevy Aedry Aevy Aeddy
PIOD PIOD || wnuie|d wnuie|d PIOD |zuoJg
azuoig azuoug p|oD $][e]5) azuoJg 8][e]5)
7y ,ﬂo\spmz SOTT =1S
GOTT Vv 393lqO 01 peay
SAs Xapu|R123[qO SAS Xapu|123[qQ || sAs xapu|123[q0 éuw.ﬁo
9€TT 2PON vETT 2PON CETT 9PON 0€TT °PON
OTTT 221AI9S SUDI0T

TT 24ndi4

SOTT

v 123[qQ 03 peay

US 9,223,517 B1

Sheet 12 of 32

Dec. 29, 2015

U.S. Patent

T1 24n314

0ccT Aesue peau 0] Juss

GTCT Aesse aulwialaq

A

OT¢T °pPOU aulwWIala(

|

S0¢T c_o_ttmo_ aulwiaaq

¥0ZT ysey aie|naje)

%

€0CT AeJiE UO USNIIIM EIBP UOIIBIO| PUIA

%

Z0¢CT Aeudue 03 erep 123[qO 1A

%

00¢CT Aesse suiwialg

US 9,223,517 B1

Sheet 13 of 32

Dec. 29, 2015

U.S. Patent

06€T 08¢l G8ET SPET obeT qeeT
Aesy Aedry Aevy Aeny Aedy Aelly
PIOS PIODH || wnhuield wnune|d PI0D 9zuoJg
dzuoug Jzuoug p|oD o][e]>)} dzuo.g o][e]>}
7y /ﬁozzmz SOET 9MS
GOET Vv 123[qQ 01 peay
|
PEET apoN PEET aPON [CEET apoN
OTET 82IAI8S ujo0T
€T 34ndiy

GO0eT

v 323[q0 01 peay

US 9,223,517 B1

Sheet 14 of 32

Dec. 29, 2015

U.S. Patent

¥T 84n314

0EtT Aedie peal 0] 1uas

|

Gz T Aedse sulwialag

|

o VT 9pOou mau ugdIssy

|

.:w._“ aJnjiej aZ||eay

A

0T T ©POU aulwliala(d

US 9,223,517 B1

Sheet 15 of 32

Dec. 29, 2015

U.S. Patent

123[qQ puaddy
? /

shs xapu|:303[q0
9€ST SpON

sAs xopu 81230
VEST 9PON

sAs xapu|1123(q0
ZEST 9PON

shs xapu|1193(q0
0€ST SPON

06ST 08ST G84T YAy ovsT Geat
Aesy Aediy Aeduy Aeay Aedry Aediy
PIoS PIOD || wnunield wnuneld PIOS 9zuo.g
azuoug azuoug Jels) o][e]>) azuoug o][e]>)
77CTIOMIDN S0ST =S

GOST

ST 24n3i4

OTST 221A43S U0

-

GOSTV 102/qQ 01 puaddy

US 9,223,517 B1

Sheet 16 of 32

Dec. 29, 2015

U.S. Patent

9T 24ndl4

0¢9T Aedse peas 0] puaddy

GTOT Aedse sujwia1aQ

A

OT9T 2pOuU aulwiala(

|

G09T c_o_H_tmo_ aulwia1aQ

09T Ysey aie|nojed

ﬁ

€09T AeJle UO UDIIIIM BIBP UOIIRIO| PUl

%

C09T Aedse 01 elep 199[q0 MM,

ﬁ

009T Aesse sulwialaq

US 9,223,517 B1

Sheet 17 of 32

Dec. 29, 2015

U.S. Patent

0641 0841 S8LT SviT ovLT GELT
Aevy Aedy Aedry Aedy Aedry Aeday
PIOD PIOD || wnulle|d wnuneld PIOS |zuoJg
azuoJg azuoug P|oD o] [e]5) azuoug o] [e]5)
7571 N\Eoz GOLT =4S
GOLT v 123[qQ 01 peay
SAS xapu|8123[q0 SAS xapu|2123[qQ | SAS xapu|g103[qQ | SAS xapu|g109[q0O
9€LT 9PON VELT 9PON CeLT °PON 0€LT @PON

0T/LT 221AJ9S U0

o
g

Fy,

wa1sAS Suixapu

LT aIn3i4

SOLT

v 303[qQ 01 peay

US 9,223,517 B1

Sheet 18 of 32

Dec. 29, 2015

U.S. Patent

8T aJn3i4

GTRT 9seqgeiep ul uoiied Jo |0J3U0D el

H

OTKT uolled uaasun auIWlIRag

US 9,223,517 B1

Sheet 19 of 32

Dec. 29, 2015

U.S. Patent

6T 24n814

SP6T
0667 Aedy 086T Aedy G36T Aewy Aesry 0v6T Aedy SE6T Aewy
pIoD [s]o} wnuiie|d wnune|d ploo ozuolg
azuoug azuoJig ploo p|oo azuoJg p|oo
<S06eT
76T HOMSN
SEBT #poN 7EAT anoN TE6I BOON (EET spoN

G167 aoniag Buppot

Ge61 w21sAs Bumapuy

6167 BIEPEIAW I

GT6T 19[qo peay

LT6T elepelawl peay

€167 193[qo a1ea1)

$109[q0
G¢6T 1oNngd

$3129/q0
€¢6T 19jong

TT6T SonUewWsS

9261 Wo1sAS 103[00

US 9,223,517 B1

Sheet 20 of 32

Dec. 29, 2015

U.S. Patent

0 24n34

704
060¢ Aeliy 0807 Aeliy 5807 Aeduy Aesiy 070¢ Aeliy SE0¢ Aeuy
p|oo pjoo wnuie|d wnulne|d p|oo azuoJug
Jzuolg 3zuoug p|oo ploo 3zuoJig p|oo
S00Z
TH0¢ SHOMBEN
FEQE 8pON TEOT apop TEOZ BpoN G507 spoN

TT07 aoinaag Buppoo

G707 wWeishs Bumapy)

6T0C elepelaw alluAA

GTOT 199[q0 peay

/T0OC elepeisaw peay

€T10¢ 12[gqo a1eas)

T10C SOlUBWaS

T20T (s|eueuly) 1yong

970T WaisAs 103lqo

€20t (s|edueuly)iayong a1eal)

U.S. Patent Dec. 29, 2015 Sheet 21 of 32 US 9,223,517 B1

Figure 21

Create Bucket 2110

US 9,223,517 B1

Sheet 22 of 32

Dec. 29, 2015

U.S. Patent

77 2Jn314

744
06¢c Aedy 08¢ Aeluy 98¢c Aely Aesry ovzz Aeiy gece Aey
ploo ploo wnuie|d wnuiie|d ploo azuoug
2Zuolg 2ZUuo.lg pP|oo P|oD ozZuolg [s][¢]}
o144
YATAR PISLOELY
SE7Z BpON YEEL BPON 7E€C OpoN 0E¢7 apon
¥Tcc (z-m)sweu 103lgo ‘gl 1onqg)1oslqo areal

GICE aopimg Buppot |+ _ A SE7Z WR1sAS Buixebu;, -

i i

— JE— | |
6TCC BIEpeIdW M | | GTZ¢ 129(qo peay i (2-m) 393[qO |
| —— |

| Tcqe (s|eueuy) 1xyang |

L 1

LTTC B1EPEISW PEIY

€T 199[qo =1eal)

TTCC SONUBWAS

9¢c¢ Wa1sAs 123lqo

€TCC ((z-M)193[q0 MaU ‘s|elduBUL)149Ng103[q0 PPY

US 9,223,517 B1

Sheet 23 of 32

Dec. 29, 2015

U.S. Patent

0EEC Wa1sAs Suixapul 01Ul sWEeU 134oNg PPY

€z 24ndy

+
—L

Gzcc |euanol ul pJoday

*

ONWN Aelie 01 1Uas

GTE Aeudse suiwiialag

1T

TE€¢ @pOuU aulwialag

f

ZTE¢ uoniled suiwialag

1

TTEZ YSeH aienoajed

ﬂ

0T ¢ AeJie UO US1ILIM BIEP UOIIRIO| pUl

f

60¢¢ Aedse 01 eyep 103[qO MM

ﬁ

30¢¢ Aeuse aulwialag

/0€¢ |ood adeJ01s sulwJalg

A

GOET 1sanbau aA1903Y

US 9,223,517 B1

Sheet 24 of 32

Dec. 29, 2015

U.S. Patent

¢ 24n8i4

] euJno
067¢ Aelly 087Z Aeuy S]YT Aelty z> Aely O¥rZ Aedly GEVC Aedry
Y ¢o941+d
ploo p|oo wnuiie|d / _ wnune|d ploo azuoug
azuolg azuoJlg p|oo = ploo azuolg p|oD
e
. Elepels|N
uoniued ¢
SOt
TT7¢ SHOMION
SO0v¢ |eudnor 01 aguey) puaddy e
Qe BRON Ol e SPON
[- il T

F
i

vIve (z-m

rumBOmmc_msu

L]

7Te WEisAs Bumapu

617 e1epelsw aHIM

QT 199(qo peay

L1 EIEPEISW PESY

€Tt 13[qo a1eald

TIvC SONUBWSS

gZc WasAs 199[q0

ez (z-m)103[qoa8ueyd

US 9,223,517 B1

Sheet 25 of 32

Dec. 29, 2015

U.S. Patent

gz aIngdy

G¢SZ |eusnol ul psooay

GTS¢ Aedie suiwialaq

A

0TS @POU sulwialaQ

|

G0S¢ c_o_u,_tmo_ CIVIEIETq

¥0SZ ysey a1e|ndjed

ﬁ

€0GZ AeJle UO USILIM B1EP UOIIRI0| PUI

ﬁ

C0GT Aeuse 01 erep 193(q0 a3

US 9,223,517 B1

Sheet 26 of 32

Dec. 29, 2015

U.S. Patent

9z 24n3l4

D197 |euINOl —— —
- ke S¥9¢T
069¢ Aelty 089¢ Aelty G897 Aeduy z Aerry 0%9¢ Aely Gg9¢ Aely
¥9¢=9Jl+d
ploo pioo wnuneld / _ wnune|d ploo azuo.g
9zuolg azuoJg p|oo Mﬁ p|oD azuoug p|1oo
_| elepeis|N
uolnlied K
509¢
7T0¢ SHOMION
- 097 e1epRISW 3S1Ed
9T97 BPON Pead . QL0 BPON
192 (z-m)13lqosnieisisanbau

(%] T

e

wiEshy Buapug

BTOC E1BPEIDW DM

GT9¢ 19(qo peay

7T9¢ e1epelaw peay

€19¢ 103[qo a1eau)

T19¢ SONUBWS

9279¢ Wa1sAS 193[q0

c79¢ (z-m)13lqosnieisisanbal

US 9,223,517 B1

Sheet 27 of 32

Dec. 29, 2015

U.S. Patent

£7 84n314

0c/Zc Wa1sAs Suixapul AQ paij10ads suol1ed0| peay

|

GT/ 7 Wa1sAs Suixapul woJy Sal1jua 199

H

OTZZ SNiels oy 1sanbal aniaday

US 9,223,517 B1

Sheet 28 of 32

Dec. 29, 2015

U.S. Patent

87 4ns1y

8T
068¢ Aeliy 088Z Aewly GB88C Aewy Aerry 0P8 Aedly GE]T Aewly
ploD pIoo wnuneld wnune|d p|oo azuolg
azuoug azuolg p|oo ploo azuoug p|oo
Q08¢
T8¢ OIS/
SEE7 apon FEEE snoN 12514 %O{ 97 spon

BT8F souss Bunjpot

Goae winisAS Bupenul

/

GT8T 13(¢o peay

/

6T]C B1EPEIDW 31IAN

9¢8¢ Wa1sAs 122lq0

T8¢ elepelaw peay || EI8¢ 5@30 1891
TT8Z SONUBWSS
/
v08¢ €08¢ 208¢C
Yied JUNOIA UOHELIOJUItEd | | (3a3y2nq)3)id159Nnbau

US 9,223,517 B1

Sheet 29 of 32

Dec. 29, 2015

U.S. Patent

67 24ndi4

0Z6¢ syied 31} JUNOIA]

%

GT6¢C syied 3|l uiniay

|

0162 Salua 199[qo 21epIjosuo)

H

L06¢ pwv_u:o__ JoJ yied a1enoje)

GS06¢ 1sonbau walsAs 8|1} an198Yy

US 9,223,517 B1

Sheet 30 of 32

Dec. 29, 2015

U.S. Patent

080¢ S80¢€ 060¢€ Svoge oroE SE0¢
Aeury 914 Aeauy 199(q0 Aeuay 3o0|g Aessy 9|14 Aeaay 199[q0 Aesueyoolg
PIoD wnunield p1oS wnuneid plos 2zZuo.g
£60¢E
pNoj zuoJg pIOD azuoug [o][e]5) azuoig p|oD
<S00¢€
ZF0g WOMISN
QLT BPON PL0t PPON LE0t BPON Ot0t BPON

OT0% auadeg mQEUQ.,_

&0t weshs Bupxapuy

610¢€ elepeldw a1l

GTO€ 103lqo peay

ZTOS elepelsw pesy

€TOE 19[qo a1eau)

TTOE sanuewas

970¢€ WalsAsS 103[q0

0€ 3483

US 9,223,517 B1

Sheet 31 of 32

Dec. 29, 2015

U.S. Patent

1€ 24n314

WALISAS

T0dd DU

S¢1¢ || c¢0Te

e

PO T€E

101¢

SIIHN0S

T0T¢E

00 T¢E

U.S. Patent Dec. 29, 2015 Sheet 32 of 32 US 9,223,517 B1

Figure 32

o =)

~N —

o o o

o o o
™ ,
P ;

£,
Lk

P

US 9,223,517 Bl

1
SCALABLE INDEX STORE

A portion of the disclosure of this patent document may
contain command formats and other computer language list-
ings, all of which are subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

This invention relates to data replication.

RELATED APPLICATIONS

This Application is related to U.S. patent application Ser.
No. 13/630,455 entitled “SINGLE CONTROL PATH” filed
on Sep. 28, 2012, Ser. No. 13/631,030 entitled “METHOD
AND APPARATUS FOR FEDERATING A PLURALITY
OF ONE BIG ARRAYS” filed on Sep. 28, 2012, Ser. No.
13/631,039 entitled “METHOD AND APPARATUS FOR
AUTOMATED INFORMATION LIFECYCLE MANAGE-
MENT USING A FEDERATION OF ARRAYS” filed on
Sep. 28,2012, Ser. No. 13/631,055 entitled “METHOD AND
APPARATUS FOR FEDERATED IDENTITY AND
AUTHENTICATION SERVICES” filed on Sep. 28, 2012,
Ser. No. 13/631,190 entitled “APPLICATION PROGRAM-
MING INTERFACE” filed on Sep. 28,2012, Ser. No. 13/631,
214 entitled “AUTOMATED POLICY BASED SCHEDUL-
ING AND PLACEMENT OF STORAGE RESOURCES”
filed on Sep. 28, 2012, Ser. No. 13/631,246 entitled “DIS-
TRIBUTED SYSTEM SOFTWARE INFRASTRUCTURE”
filed on Sep. 28, 2012, and Ser. No. 13/886,786 entitled
“DISTRIBUTED WORKFLOW MANAGER” filed on even
date herewith, Ser. No. 13/886,789 entitled “PORT PROVI-
SIONING SYSTEM” filed on even date herewith, Ser. No.
13/886,892 entitled “SCALABLE INDEX STORE” filed on
even date herewith, Ser. No. 13/886,687 entitled “STORAGE
PROVISIONING IN A DATA STORAGE ENVIRON-
MENT? filed on even date herewith, and Ser. No. 13/886,644
entitled “STORAGE PROVISIONING IN A DATA STOR-
AGE ENVIRONMENT” filed on even date herewith, which
are hereby incorporated herein by reference in their entirety.

BACKGROUND

Computer systems may include different resources used by
one or more host processors. Resources and host processors
in a computer system may be interconnected by one or more
communication connections. These resources may include,
for example, data storage devices such as those included in
the data storage systems manufactured by EMC Corporation.
These data storage systems may be coupled to one or more
servers or host processors and provide storage services to
each host processor. Multiple data storage systems from one
or more different vendors may be connected and may provide
common data storage for one or more host processors in a
computer system.

A host processor may perform a variety of data processing
tasks and operations using the data storage system. For
example, a host processor may perform basic system [/O
operations in connection with data requests, such as data read
and write operations.

Host processor systems may store and retrieve data using a
storage device containing a plurality of host interface units,

10

15

20

25

30

40

45

50

55

60

65

2

disk drives, and disk interface units. Such storage devices are
provided, for example, by EMC Corporation of Hopkinton,
Mass. and disclosed in U.S. Pat. No. 5,206,939 to Yanai et al.,
U.S. Pat. No. 5,778,394 to Galtzur et al., U.S. Pat. No. 5,845,
147 to Vishlitzky et al., and U.S. Pat. No. 5,857,208 to Ofek.
Thehost systems access the storage device through a plurality
of channels provided therewith. Host systems provide data
and access control information through the channels to the
storage device and storage device provides data to the host
systems also through the channels. The host systems do not
address the disk drives of the storage device directly, but
rather, access what appears to the host systems as a plurality
of'logical disk units, logical devices or logical volumes. The
logical disk units may or may not correspond to the actual
physical disk drives. Allowing multiple host systems to
access the single storage device unit allows the host systems
to share data stored therein. In a common implementation, a
Storage Area Network (SAN) is used to connect computing
devices with a large number of storage devices. Management
and modeling programs may be used to manage these com-
plex computing environments.

Two components having connectivity to one another, such
as a host and a data storage system, may communicate using
a communication connection. In one arrangement, the data
storage system and the host may reside at the same physical
site or location.

Techniques exist for providing a remote mirror or copy of
adevice of the local data storage system so that a copy of data
from one or more devices of the local data storage system may
be stored on a second remote data storage system. Such
remote copies of data may be desired so that, in the event of a
disaster or other event causing the local data storage system to
be unavailable, operations may continue using the remote
mirror or copy.

In another arrangement, the host may communicate with a
virtualized storage pool of one or more data storage systems.
In this arrangement, the host may issue a command, for
example, to write to a device of the virtualized storage pool.
In some existing systems, processing may be performed by a
front end component of a first data storage system of the pool
to further forward or direct the command to another data
storage system of the pool. Such processing may be per-
formed when the receiving first data storage system does not
include the device to which the command is directed. The first
data storage system may direct the command to another data
storage system of the pool which includes the device. The
front end component may be a host adapter of the first receiv-
ing data storage system which receives commands from the
host. In such arrangements, the front end component of the
first data storage system may become a bottleneck in that the
front end component processes commands directed to
devices of the first data storage system and, additionally,
performs processing for forwarding commands to other data
storage systems of the pool as just described.

Often cloud computer may be performed with a data stor-
age system. As it is generally known, “cloud computing”
typically refers to the use of remotely hosted resources to
provide services to customers over one or more networks
such as the Internet. Resources made available to customers
are typically virtualized and dynamically scalable. Cloud
computing services may include any specific type of applica-
tion. Some cloud computing services are, for example, pro-
vided to customers through client software such as a Web
browser. The software and data used to support cloud com-
puting services are located on remote servers owned by a
cloud computing service provider. Customers consuming ser-
vices offered through a cloud computing platform need not

US 9,223,517 Bl

3

own the physical infrastructure hosting the actual service, and
may accordingly avoid capital expenditure on hardware sys-
tems by paying only for the service resources they use, and/or
a subscription fee. From a service provider’s standpoint, the
sharing of computing resources across multiple customers
(aka “tenants”) improves resource utilization. Use of the
cloud computing service model has been growing due to the
increasing availability of high bandwidth communication,
making it possible to obtain response times from remotely
hosted cloud-based services similar to those of services that
are locally hosted.

Cloud computing infrastructures often use virtual
machines to provide services to customers. A virtual machine
is acompletely software-based implementation of a computer
system that executes programs like an actual computer sys-
tem. One or more virtual machines may be used to provide a
service to a given customer, with additional virtual machines
being dynamically instantiated and/or allocated as customers
are added and/or existing customer requirements change.
Each virtual machine may represent all the components of a
complete system to the program code running on it, including
virtualized representations of processors, memory, network-
ing, storage and/or BIOS (Basic Input/Output System). Vir-
tual machines can accordingly run unmodified application
processes and/or operating systems. Program code running
on a given virtual machine executes using only virtual
resources and abstractions dedicated to that virtual machine.
As aresult of such “encapsulation,” a program running in one
virtual machine is completely isolated from programs run-
ning on other virtual machines, even though the other virtual
machines may be running on the same underlying hardware.
In the context of cloud computing, customer-specific virtual
machines can therefore be employed to provide secure and
reliable separation of code and data used to deliver services to
different customers.

SUMMARY

A method, system, and computer program product for pro-
viding, via a provisioning engine, a scalable set of indexed
key-value pairs enabled to store objects in a data storage
environment; wherein the data representing the objects is
enabled to be spread across arrays in the data storage envi-
ronment; wherein additional arrays are enabled to be added to
the data storage environment and included in the indexed
key-value pairs; wherein the data stored across the arrays may
be balanced.

BRIEF DESCRIPTION OF THE DRAWINGS

Objects, features, and advantages of embodiments dis-
closed herein may be better understood by referring to the
following description in conjunction with the accompanying
drawings. The drawings are not meant to limit the scope of the
claims included herewith. For clarity, not every element may
be labeled in every figure. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating
embodiments, principles, and concepts. Thus, features and
advantages of the present disclosure will become more appar-
ent from the following detailed description of exemplary
embodiments thereof taken in conjunction with the accom-
panying drawings in which:

FIG. 1 is a simplified illustration of showing connectivity
in a data storage environment, in accordance with an embodi-
ment of the present disclosure;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 is a simplified illustration of adding an array in a
data storage environment, in accordance with an embodiment
of the present disclosure;

FIG. 3 is a simplified example of a method for adding an
array in a data storage environment, in accordance with an
embodiment of the present disclosure;

FIG. 4 is a simplified alternative illustration of a class of
service in data storage environment, in accordance with an
embodiment of the present disclosure;

FIG. 5 is a simplified example of a method for logging
writes in a journal in a data storage environment and commit-
ting the journal to a B+ tree, in accordance with an embodi-
ment of the present disclosure;

FIG. 6 is a simplified alternative illustration of moving a
journal and subsequent entries in a B+ tree in data storage
environment, in accordance with an embodiment of the
present disclosure;

FIG. 7 is a simplified example of a method for moving a
journal and subsequent entries in a B+ tree to another array in
a data storage system, in accordance with an embodiment of
the present disclosure;

FIG. 8 is a simplified illustration of adding an object to an
indexing system in data storage environment, in accordance
with an embodiment of the present disclosure;

FIG. 9 is asimplified example of a method for adding a new
object to be stored in a data storage system, in accordance
with an embodiment of the present disclosure;

FIG. 10 s a simplified illustration of adding an object to an
indexing system in data storage environment, in accordance
with an embodiment of the present disclosure;

FIG. 11 is a simplified illustration of reading an object in
data storage environment, in accordance with an embodiment
of the present disclosure;

FIG. 12 is a simplified example of a method for reading an
object stored in a data storage system, in accordance with an
embodiment of the present disclosure;

FIG. 13 is a simplified illustration of reading an object in
data storage environment given a node failure, in accordance
with an embodiment of the present disclosure;

FIG. 14 is a simplified example of a method for reading an
object stored in a data storage system given a node failure, in
accordance with an embodiment of the present disclosure;

FIG. 15 is a simplified illustration of appending data to an
object in data storage environment, in accordance with an
embodiment of the present disclosure;

FIG. 16 is a simplified example of a method for appending
datato an object stored in a data storage system, inaccordance
with an embodiment of the present disclosure;

FIG. 17 is a simplified illustration of node balancing in data
storage, in accordance with an embodiment of the present
disclosure;

FIG. 18 is a simplified example of a method for load
balancing in a data storage system, in accordance with an
embodiment of the present disclosure;

FIG. 19 is a simplified illustration of an object system in a
data storage environment, in accordance with an embodiment
of the present disclosure;

FIG. 20 is a simplified illustration of creating a bucket in a
data storage system, in accordance with an embodiment of the
present disclosure;

FIG. 21 is a simplified example of a method for creating a
bucket in a data storage system, in accordance with an
embodiment of the present disclosure;

FIG. 22 is a simplified illustration of creating an object in
a bucket in a data storage system, in accordance with an
embodiment of the present disclosure;

US 9,223,517 Bl

5

FIG. 23 is a simplified example of a method for creating an
object in a bucket in a data storage system, in accordance with
an embodiment of the present disclosure;

FIG. 24 is asimplified illustration of appending to an object
in a bucket in a data storage system, in accordance with an
embodiment of the present disclosure;

FIG. 25 is a simplified example of a method for appending
to anobject in abucket in a data storage system, in accordance
with an embodiment of the present disclosure;

FIG. 26 is a simplified illustration of requesting status of an
object in a bucket in a data storage system, in accordance with
an embodiment of the present disclosure;

FIG. 27 is a simplified example of a method for requesting
a status of an object in a bucket in a data storage system, in
accordance with an embodiment of the present disclosure;

FIG. 28 is a simplified example of a method for requesting
file system access in a data storage system, in accordance with
an embodiment of the present disclosure;

FIG. 29 is a simplified example of a method for requesting
file system access from an object store in a data storage
system, in accordance with an embodiment of the present
disclosure;

FIG. 30 is a simplified illustration of multiple array types
overlaid with an object system in a data storage system, in
accordance with an embodiment of the present disclosure;

FIG. 31 is an example of an embodiment of an apparatus
that may utilize the techniques described herein; and

FIG. 32 is an example of an embodiment of a method
embodied on a computer readable storage medium that may
utilize the techniques described herein.

DETAILED DESCRIPTION

Conventionally, object systems may not be scalable. Usu-
ally, an object system may not offer file access. Typically, a
file system may not offer object access. Usually, a file system
may not switch between file and object access.

In certain embodiments, the current disclosure may enable
storage of a large table or index of'key strings along with their
corresponding value bytes on file shares across multiple
devices.

In some embodiments, the current disclosure may enable
an indexing service in a VM image that may be installed on a
machine. In certain embodiments, a set of such nodes may
form an indexing service layer. In an embodiment, a set offile
shares may be created on NAS devices and registered with the
ViPR indexing service for storage of data.

In certain embodiments, nodes may form a fault tolerant
layer over NAS devices. In at least some embodiments, any
number of nodes may be removed or added at any time with-
out affecting the availability of an indexing system. In other
embodiments, any number of ViPR nodes may be unavail-
able, but the transaction processing for any part of the data
may continue to give a functioning node. In most embodi-
ments, each node may be connected to a number of file shares.
In certain embodiments, each note may be able to read and
write data from any offile shares. In other embodiments, each
node may also accept transaction for any part of the data for
any file share.

In most embodiments, the current disclosure enables a
horizontally scalable architecture. In certain embodiments, if
file shares run out of space, new file shares can be created and
registered with nodes. In certain embodiments, the indexing
system may start placing new incoming writes in the new file
shares. In further embodiments, any number of nodes may be
dynamically added in the system to increase the transaction
processing capacity of the system.

25

30

40

45

6

Virtual Storage Pool

In certain embodiments, a Virtual Storage Pool may be a
definition of the characteristics of a file share device. In most
embodiments, each file share registered with a data service
may be associated with a Virtual Storage Pool.

In some embodiments, the desired Virtual Storage Pool
characteristic for an index may be specified during its cre-
ation. In at least some embodiments, the data belonging to the
index may be stored on the file shares that are associated with
the Virtual Storage Pool. In other embodiments, if multiple
file shares are associated with the Virtual Storage Pool, the
data of the index may be spread across all the file shares. In
certain embodiments, the index may be associated with a
Virtual Storage Pool. In an embodiment, a Virtual Storage
Pool may form logically disjoint sets in which data set is
divided.

Partition

In some embodiments, a Virtual Storage Pool may be
divided into one or more Partitions. In certain embodiments,
partitioning may be done based on consistent hashing. In at
least some embodiments, a hash number of a key may be
found by deriving the SHA-256 value of the key string. In
other embodiments, each partition may be identified by the
divisor-remainder pair of the hash space. In a particular
embodiment, if a partition has divisor identifier 4 and remain-
der identifier 1, then it may contain all the keys whose hash
value when divided by 4 gives remainder 1. In most embodi-
ments, the partition identifiers may be scoped within the
Virtual Storage Pool so each of Virtual Storage Pool can have
same partition identifiers. In certain embodiments, a partition
may be responsible for storage of data associated with the
keys that fall in its hash.

Partition Split/Merge

In most embodiments, the number of partitions in the sys-
tem may change dynamically depending on the resources in
the system. In certain embodiments, if ViPR nodes and NAS
devices are added in the system then better load balancing
may be achieved by automatically increasing the number of
partitions in the system. In some embodiments, better load
balancing may be achieved by a partition split process.

In at least some embodiments, the number of partitions
may automatically be decreased when the resources become
constrained. In one embodiment, partitions may be decreased
when more file shares are creates on existing devices or when
the number of ViPR nodes are removed from the system.

In alternative embodiments, a partition with identifiers
divisor-4, remainder-1 may split into two partitions with iden-
tifiers divisor-8, remainder-1 and divisor-8, remainder-5. In
other embodiments, two partitions with identifiers divisor-4,
remainder-1 and divisor-4, remainder-3 may merge into one
partition with identifier divisor-2, remainder-1.
Infrastructure Components

In most embodiments, nodes may host a database. In some
embodiments, the database may be Cassandra. In certain
embodiments, the database data may be stored in local disks
on nodes. In further embodiments, the database may be for
storing system’s metadata and not for any of the index’s data.
In at least some embodiments, nodes may host a small
instance of a lock service or locking service. In at least one
embodiment, the locking service may be Zookeeper. In most
embodiments, the locking service may provide the lock ser-
vice for the nodes to coordinate with other nodes.

Partition Metadata

In most embodiments, the information about each partition
in the system may be stored as an entry in a database. In
certain embodiments, the entry may have the identifier for the
partition (Virtual Storage Pool, divisor, remainder). In some

US 9,223,517 Bl

7

embodiments, the entry may have the node identifier to
specify which node is currently responsible for the partition.
In at least one embodiment, the entry may have a location on
the file share where the metadata record of the partition is
stored. In at least some embodiments, a location may be
identified by the file share identifier, the full path of the file,
the offset in the file where the record begins, and the length of
the record.
Metadata Record

In an embodiment, the metadata record of a partition may
be stored in a file on the file share. In certain embodiments the
metadata record may contains the information about the latest
B+ tree of the partition, and position in the journal file. In
some embodiments, the journal file may be used as a redo log
for holding the data that hasn’t been included in the B+ tree
yet. In other embodiments, the location in the metadata record
for the journal may contain the file share id, full file path, and
the offset in the file. In most embodiments, the journal file
may be on any file share, which need not be same file share
where the B+ tree files and metadata record files are for that
partition.
Journal

In certain embodiments, data transactions for partitions
may be logged into the journal. In most embodiments, once
enough entries are accumulated in journal, the entries may be
inserted into a B+ tree, and the journal position may be
advanced. In some embodiments, in the case the node respon-
sible for the partition crashes, another node, which picks up
the responsibility, may replay the transactions from the last
journal position recorded in the metadata record.
B+ Tree

In an embodiment, a B+ tree structure may be maintained
to store the keys belonging to the partition and corresponding
values. In other embodiments, the pages of the B+ tree may be
stored in the files on the file shares. In some embodiments, the
location of pages in the tree may be identified by file share id,
full file path and offset in the file. In other embodiments, the
B+ tree may be spread across multiple file shares. In further
embodiments, the B+ tree structure may support multiversion
concurrency control and read snapshot isolation. In at least
one embodiment, the existing pages may not be modified and
modifications may be written as new pages in the file.
File System Structure

In an embodiment, a partition may have files for metadata
record, B+ tree and journal. In certain embodiments, the B+
tree and journal may span multiple files. In other embodi-
ments, each structure’s location may be reached via a chain of
pointers starting from the partition entry in Cassandra. In
most embodiments, the partition structure may not be bound
to a fixed location. In a particular embodiment, if a file share
capacity is getting full, the journal writes and B+ tree modi-
fications may be moved to another file share without break in
continuity or consistency.
Finding Partition

In most embodiments, when a node gets a transaction for a
key, it may calculate a hash value of the key. In certain
embodiments, the node may query the database to find into
which partition the key falls. In some embodiments, the par-
tition information may be cached for future transactions. In
alternative embodiments, a node may send the transaction to
the node responsible for the key to execute the transaction. In
other embodiments, if the cached information about the par-
tition responsibility was stale the destination node may return
a specific error code which may cause the source node to
query the database and refresh the information to the latest
state.

10

20

25

35

40

45

55

8

Load Balancing

In an embodiment, if a node discovers that the responsibil-
ity division of the partitions is uneven, the node may take the
responsibility from another node. In some embodiments, the
consistent hashing scheme for partitioning may result in ran-
dom and even distribution of the load. In at least some
embodiments, the number of partitions may be the criteria for
measuring even split of responsibility among the nodes.

In most embodiments, nodes periodically check the data-
base for the partitions that the node is responsible for to see if
the node is still the owner. In another embodiment, if a node
wishes to take over ownership of a partition, the node may
register itself as the owner in the database. In at least some
embodiments, the node may wait for a periodic refresh inter-
val for the original owner node to find out that the original
node is not the owner anymore, and stop serving the transac-
tions for the partition. In most embodiments, if a node is not
ableto reach the database, it may stop serving the transactions
for the partition until the node can successfully validate that it
is the owner. In further embodiments, if a node cannot reach
the owner node for some time, the node may assume that the
owner node is down and may take responsibility for the par-
tition.

Object System

In some embodiments, an object system may be build on
top of an indexing system. In certain embodiments, an object
system may provide object semantics for creating objects,
reading objects, reading and writing metadata associated with
the object. In further embodiments, the object system may
support byte range update on the object contents and atomic
append to the object data. In most embodiments, the object
system may support REST protocols and the related features
of S3, Atmos and Swift. In further embodiments, an object
service or object system may provide a single namespace that
may span across multiple file shares.

Bucket

In certain embodiments, objects may be grouped in one or
more bucket. In most embodiments, a bucket may support
operations such as listing of all the objects in the bucket. In
some embodiments, the list of object names in a bucket may
be stored in an indexing system. In a particular embodiment,
a SHA-256 of the bucket name may be used for deriving a
hash id of the partition where the list is stored. In at least some
embodiments, when an object is created, an entry may be
made in the indexing system for the bucket id and object
name. In other embodiments, the listing of bucket operations
may go through the entries in the indexing for the bucket id.
Object Transactions

In an embodiment, each change or mutation to an object
may be stored as a separate transaction. In most embodi-
ments, storing each change as a separate transaction may
provide a journal of changes to the object without overwriting
the previous state. In certain embodiments, recording a sepa-
rate object may enable snapshot read isolation. In further
embodiments, querying the object at a given point in time
may see the same consistent state of object throughout the
read duration as it was when it started reading.

In other embodiments, the data associated with a change or
mutation in an object may be written directly into a file on the
fileshare. In certain embodiments, the location of the data
may be stored in the indexing system as an update entry. In a
particular embodiment, a given object may have many update
entries in the index, each with location of the data on the file
system. In at least some embodiments, a reader may need to
go through all the update entries of an object to get the current
state of the object. In some embodiments, the system may
consolidate the update entries of an object when there are no

US 9,223,517 Bl

9

readers. In alternative embodiments, SHA-256 of the object
name may be used for deriving the hash id of the partition
where the update entries for the object are stored.

Atomic Append

In certain embodiments, multiple transactions for atomi-
cally appending the data to the object may be issued. In some
embodiments, the update sequencing on the server side of the
indexing system may order the append transactions and may
provide the atomicity.

Native File Access for Object Data

In an embodiment, the file access feature may provide
ability to access the object data through the native file system
interface of the NAS device by mounting the fileshare. In
certain embodiments, the user may send a request to get file
access for a bucket. In some embodiments, the system may
return the full file path for each of the objects in the bucket. In
other embodiments, modifications made through the file
interface on those objects may be reflected in the object data.
In at least some embodiments, during modifications to the
object through REST interface may be prevented. In alterna-
tive embodiments, when a user is done with file access, the
REST interface may be accessible. In at least one embodi-
ment, internally the system may consolidate the update
entries and data of an object and may place them into a single
file before giving the file out for file access.

Refer now to the simplified embodiment of FIG. 1. In the
example embodiment of FIG. 1, indexing system 125 has
locking service 112, nodes 130, 132, 134, and 136, and data-
base 110. Database 110 has storage pool 114. Storage pool
114 has gold storage 114 and bronze storage 118. Site 105 has
array 135, 140, 145, 185, 180, and 190. Each array has two
levels of storage such as Gold, Bronze or Platinum. For
example array 135 has gold and bronze service levels. Each
node, 130, 132, 134, and 136 is connected through network
147 to each storage array 135, 140, 145, 180, 185, and 190.
Each of the arrays may be stored in database 110 as belong to
one or more storage pools based on the Class of Services
offered by that storage array. Each node 130, 132, 145, and
135 has access to an object system and an index system. In
certain embodiments, the object system may be for storing
objects. In some embodiments, the index system may be for
storing the location of the stored objects for scalable access.

Refer now to the example embodiments of FIGS. 2 and 3.
In FIG. 2, array 295 has been added to site 205 (step 305).
Storage Array 295 has been registered with nodes 230, 232,
234, and 236 (step 310). In this way, subsequent arrays may
be added to site 205 and registered with the nodes and index-
ing system.

Refer now to the example embodiments of FIGS. 4 and 5,
which illustrate committing journal entries to a B+ tree. When
mutations are received to objects in an indexing system, the
mutations are recorded in journal 446 on storage array 445
(step 505). After journal 446 has reached a certain size, the
transactions in journal 446 are committed to B+ tree 444. B+
Tree 444 is stored on arrays 445 and 485. As B+ Tree 444 is
atree, each node of the tree may be stored on a different array
with a pointer pointing to the next node.

Refer now to the example embodiments of FIGS. 6 and 7,
which illustrate moving the recording of mutations in a B+
tree and journal to a different array from a first tree. Partition
metadata 642 has oldB+ tree 644, oldJournal 646, B+ Tree
643, and Journal 647. It has been determined that file array
645 is full (705). Mutations to metadata 642 to oldB+ trec 644
and oldJournal 646 are stopped. New mutations to metadata
642 are recorded in B+ tree 643 and journal 647 on array 635
(step 710).

10

15

20

25

30

35

40

45

50

55

60

65

10

Refer now to the example embodiments of FIGS. 8 and 9,
which illustrate a new object with a requested Class of service
gold being recorded in an indexing system. Object A 815 is
being broken up and stored on arrays 835, 845 and 885 based
on a request for a gold class of service for this object. A
request for creation and storing of object 815 is received (step
905). Object system, via node 830, determines in which stor-
age pool object 815 is to be stored (step 907). Object system,
via node 830, determines on which array or arrays the object
is to be stored (step 908). Object system, via node 830, writes
object data to the array (909). Object system via node 830
finds the location data written on the array (step 910). The
hash for object 815 is calculated (step 911). A partition for
object 815 is determined and stored in indexing system via
node 830 (step 912). A node for object 815 is determined is
determined by indexing system via node 830 (step 913). An
array is determined for object 815 by indexing system via
node 830 (step 915). Object 815 is sent to array (step 920).
The object write is recorded in the journal (step 925).

Refer now to the example embodiments of FIGS. 9 and 10,
which illustrate a new object with a requested class of service
of bronze being recorded in an indexing system. Object B
1015 is being broken up and stored on arrays 1040, 1080 and
1090 based on a request for a bronze class of service for this
object. A request for creation and storing of object 1015 is
received (step 905). Object system, via node 1030, deter-
mines in which storage pool object 1015 is to be stored (step
907). Object system, via node 1030, determines on which
array or arrays the object is to be stored (step 908). Object
system, via node 1030, writes object data to the array (909).
Object system via node 830 finds the location data written on
the array (step 910). The hash for object 1015 is calculated
(step 911). A partition for object 1015 is determined and
stored in indexing system via node 830 (step 912). A node for
object 1015 is determined is determined by indexing system
via node 830 (step 913). An array is determined for object
1015 by indexing system via node 1030 (step 915). Object
1015 is sent to array (step 920). The object write is recorded
in the journal (step 925).

Refer now to the example embodiments of FIGS. 11 and
12, which illustrate a read to an object stored in an indexing
system. Indexing system receives read to object A 1105.
Indexing system 1125 determines on which array object A
1105 is stored (step 1200). Indexing system 1125 writes the
object data to the array (step 1202). Indexing system finds the
location the data is written on the array (step 1203). Indexing
system 1125 calculates the hash for object A 1105 (step
1204). Indexing system 1125 determines the partitions on
which object A 1105 is stored (step 1205). Indexing system
1125 determines the node handling the partition (step 1205).
Node 1130 determines the array 1185 (step 1215). Node 1130
sends the read to the array 1185 (step 1220).

Refer now to the example embodiments of FIGS. 13 and
14, which illustrate handling a node failure. Indexing system
1325 receives a read to object A 1305 and determines which
node is to handle reads to this object (step 1410). Indexing
system 1325 realizes there is a failure in node 1330, the
previously determined node (step 1415). Indexing system
assigns new node 1332 to handle the read for object A 1305
(step 1420). Node 1332 determines array 1385 has the infor-
mation for the read (step 1425). Node 1330 sends the read to
the array (step 1430).

Refer now to the example embodiments of FIGS. 15 and
16, which illustrate handling an append to an object. Indexing
system receives read to object A 1505. Indexing system 1525
determines on which array object A 1505 is stored (step
1600). Indexing system 1525 writes the object data to the

US 9,223,517 Bl

11

array (step 1602). Indexing system finds the location the data
is written on the array (step 1603). Indexing system 1525
calculates the hash for object A 1505 (step 1604). Indexing
system 1525 determines the partitions on which object A
1505 is stored (step 1605). Indexing system 1525 determines
the node handling the partition (step 1605). Node 1530 deter-
mines the array 1185 (step 1615). Node 1530 sends the read
to the array 1585 (step 1620).

Refer now to the example embodiments of FIGS. 17 and
18, which illustrate a node determining an uneven partition
allocation and taking control of a partition. Node 1732 deter-
mines that node 1730 has an uneven allocation of partitions
(step 1810). Node 1732 takes control of one of node 1730’s
partitions to service read to object A 1705 (step 1815).

Refer now to the example embodiment of FIG. 19, which
illustrates an object system layered over an indexing system.
Object system 1926 has semantics 1911, bucket objects 1923
and 1925, and indexing system 1925. Semantics 1911 has the
ability to create objects 1913, read objects 1915, read meta-
data 1917, and write metadata 1919. Buckets 1923 and 1925
contain objects and are classifiers for objects. Object system
1926 is connected to storage location 1905 by network 1947.
Storage location 1905 has arrays 193, 1940, 1945, 1985,
1980, and 1990.

Refer now to the example embodiments of FIGS. 20 and
21, which illustrate creating a bucket. Object system 2026
receives a request to create bucket (financials) 2023. Object
system 2026 creates bucket financials 2021 (step 2110). Note
in this embodiment that bucket financials does not contain
objects as none have been added to this bucket.

Refer now to the example embodiments of FIGS. 22 and
23. Object system 2226 receives a request 2223 to add an
object to a bucket, where the object has not yet been created.

Object system, via node 2230, determines in which storage
pool object 2214 is to be stored (step 2307). Object system,
via node 2230, determines on which array or arrays the object
is to be stored (step 2308). Object system, via node 2230,
writes object data to the array (2309). Object system via node
2230 finds the location data written on the array (step 2310).
The hash for object 2215 is calculated (step 2311). A partition
for object 2215 is determined and stored in indexing system
via node 2230 (step 2312). A node for object 2215 is deter-
mined is determined by indexing system via node 2230 (step
2313). An array is determined for object 2215 by indexing
system via node 2230 (step 2315). Object 2215 is sent to array
(step 2320). The object write is recorded in the journal (step
2325). The bucket name is added by node 2230 to the index-
ing system (step 2330).

Refer now to the example embodiments of FIGS. 24 and
25. Indexing system 2425 writes the object data to the array
(step 2502). Indexing system finds the location the data is
written on the array (step 2503). Indexing system 2425 cal-
culates the hash for object A 2405 (step 2504). Indexing
system 2425 determines the partitions on which object A
2405 is stored (step 2505). Indexing system 2525 determines
the node handling the partition (step 2505). Node 2430 deter-
mines the array 2485 (step 2515). Node 1530 sends the read
to the array 1585 (step 1620). The data that is changed is
recorded in journal 2446 (step 2525).

Refer now to the example embodiments of FIGS. 26 and
27, which show responding to a status request for an object.
Object system 2626 receives a request for status for object
w-2 2623 (step 2710). Object system 2626 gets the locations
in the indexing system that correspond to the object requested
(step 2715). Node 2634 reads the entries from the indexing
system to return the object status (step 2720).

15

20

25

30

35

40

45

55

60

12

Refer now to the example embodiments of FIGS. 28 and
29, which show file access to an object system. Object system
2826 receives arequest for file system access (step 2905). The
object system 2826 calculates the paths 2803 for the file
system (step 2907). The object system 2826 determines con-
solidates the object entries (step 2810). The object system
returns the file paths 2803 (step 2815). The file paths are
mounted 2804 and read write access for the file system may
be enabled (step 2920). In some embodiments, read write
access to the file system may be enabled and access to the
objects may not be permitted. In other embodiments, read
access to both the file system and the object system may be
enabled. In still further embodiments, read write access to the
object system may be enabled and no access to the file system
may be enabled.

In further embodiments, the data storage arrays may of the
block type, file type, or object type. In some embodiments, the
object system may span across block, fileand object arrays. In
other embodiments, the indexing system may span across file,
block, and object arrays. In further embodiments, the object
system may span across public accounts. In other embodi-
ments the indexing system may span across public accounts.
In some embodiments, the current disclosure may enable an
object to be stored and received from a public cloud, such as
Amazon’s S3 or Microsoft’s Adzure. In other embodiments,
any type of array may be used and the current disclosure may
enable coordination across the arrays regardless of type.

For example, refer now to the example embodiment of FIG.
30, which illustrates different types of storage systems over
laid with an object system. Object system 3026 communi-
cates with cloud 2997 and site 3005 over network 3047.
Cloud 2997 is a public cloud and information may be stored
in and retrieved from the public cloud using object system
3026. Site 3005 has block arrays 3035 and 3090, object arrays
3040 and 3085, file arrays 3045 and 3080. Object 3026 sys-
tem enables objects to be stored and retrieved any array and
cloud 3097. As well, Object system 3026 also enables file
access to objects stored in the arrays and cloud. In certain
embodiments the cloud may be a private cloud. In other
embodiments, the cloud may be a public cloud.

In further embodiments, an orchestration API may be part
of'alarger API or coordination API. In some embodiments, an
orchestration API may request input from a large API or
Orchestration engine. In other embodiments, an orchestration
API may request input from a user. In still further embodi-
ments, an orchestration API may be one of a set of other
orchestration APIs, wherein each of the set of orchestration
APIs offer different orchestration functionality. In of these
embodiments, the set of orchestration APIs may be combined
with an overall Orchestration or Engine layer which may
coordinate requests between the set of orchestration APIs.

The methods and apparatus of this invention may take the
form, at least partially, of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-
ROMs, hard drives, random access or read only-memory, or
any other machine-readable storage medium. When the pro-
gram code is loaded into and executed by a machine, such as
the computer of FIG. 31 the machine becomes an apparatus
for practicing the invention. When implemented on one or
more general-purpose processors, the program code com-
bines with such a processor 3103 to provide a unique appa-
ratus that operates analogously to specific logic circuits. As
such a general purpose digital machine can be transformed
into a special purpose digital machine. FIG. 32 shows Pro-
gram Logic 3234 embodied on a computer-readable medium
3230 as shown, and wherein the Logic is encoded in com-
puter-executable code configured for carrying out the reser-

US 9,223,517 Bl

13

vation service process of this invention and thereby forming a
Computer Program Product 3200. The logic 3234 may be the
same logic 3140 on memory 3104 loaded on processor 3103.
The program logic may also be embodied in software mod-
ules, as modules, or as hardware modules.

The logic for carrying out the method may be embodied as
part of the system described below, which is useful for car-
rying out a method described with reference to embodiments
shown in, for example, FIGS. 9, 14, and 16. For purposes of
illustrating the present invention, the invention is described as
embodied in a specific configuration and using special logical
arrangements, but one skilled in the art will appreciate that the
device is not limited to the specific configuration but rather
only by the claims included with this specification.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. Accordingly,
the present implementations are to be considered as illustra-
tive and not restrictive, and the invention is not to be limited
to the details given herein, but may be modified within the
scope and equivalents of the appended claims.

What is claimed is:

1. A system for storage provisioning in a data storage
environment, the system comprising:

a storage provisioning engine; and

computer-executable program code operating in memory

couple with a processor in communication with the data-
base, wherein the computer-executable program code is
configured to enable a processor to execute logic to
enable:

providing a scalable set of indexed key-value pairs enabled

to store objects in a data storage environment; wherein
the system is enabled to store respective portions of the
data of each respective object across arrays in the data
storage environment without storing every portion of the
respective objects on multiple arrays of the data storage
environment; wherein additional arrays are enable to be
added to the data storage environment and included in
the indexed key-value pairs; wherein the data stored
across the arrays may be balanced; wherein the arrays
are enabled to include one or more block array, file array,
and object array; wherein if the arrays include a block
array, a file array, and an object array, the scalable set of
indexed key-pair values are enabled to be spread across
atleast the block array, the file array, and the object array.

2. The system of claim 1 wherein the storage provisioning
engine is enabled to append data to an object in the indexed
key-pair values by automatically appending the data to the
end of the object stored in the data storage environment with-
out having to specify additional information about the object.

3. The system of claim 1 wherein the balancing is based on
class of service of the object.

4. The system of claim 1 wherein the balancing is based on
quality of service of the object.

5. The system of claim 1 wherein a common namespace is
overlayed on the key-value pairs.

6. A computer implemented method comprising:

providing, via provisioning engine, a scalable set of

indexed key-value pairs enabled to store objects in a data
storage environment; wherein the system is enabled to
store respective portions of the data of each respective
object across arrays in the data storage environment
without storing every portion of the respective objects on
multiple arrays of the data storage environment; wherein
additional arrays are enabled to be added to the data
storage environment and included in the indexed key-
value pairs; wherein the data stored across the arrays

20

25

30

35

45

55

14

may be balanced; wherein the arrays are enabled to
include one or more block array, file array, and object
array; wherein if the arrays include a block array, a file
array, and an object array, the scalable set of indexed
key-pair values are enabled to be spread across at least
the block array, the file array, and the object array.
7. The method of claim 6 wherein the storage provisioning
engine is enabled to append data to an object in the indexed
key-pair values by automatically appending the data to the
end of the object stored in the data storage environment with-
out having to specify additional information about the object.
8. The method of claim 6 wherein the balancing is based on
class of service of the object.
9. The method of claim 6 wherein the balancing is based on
quality of service of the object.
10. The method of claim 6 wherein a common namespace
is overlayed on the key-value pairs.
11. A computer program product comprising:
A non-transitory computer readable medium encoded with
computer executable program, the code enabling:

providing, via provisioning engine, a scalable set of
indexed key-value pairs enabled to store objects in a data
storage environment; wherein the system is enabled to
store respective portions of the data of each respective
object across arrays in the data storage environment
without storing every portion of the respective objects on
multiple arrays of the data storage environment; wherein
additional arrays are enabled to be added to the data
storage environment and included in the indexed key-
value pairs; wherein the data stored across the arrays
may be balanced; wherein the arrays are enabled to
include one or more block array, file array, and object
array; wherein if the arrays include a block array, a file
array, and an object array, the scalable set of indexed
key-pair values are enabled to be spread across at least
the block array, the file array, and the object array.

12. The computer program product of claim 11 wherein the
storage provisioning engine is enabled to append data to an
object in the indexed key-pair values by automatically
appending the data to the end of the object stored in the data
storage environment without having to specify additional
information about the object.

13. The computer program product of claim 11 wherein the
balancing is based on class of service of the object.

14. The computer program product of claim 11 wherein the
balancing is based on quality of service of the object.

15. The computer program product of claim 11 wherein a
common namespace is overlayed on the key-value pairs.

16. The method of claim 6 wherein copies of the scalable
set of indexed key-value pairs are stored on an indexing
system, the method further comprising:

determining at the indexing system a responsible node of a

set of nodes to handle requests for an object;

routing a request from the indexing system to responsible

node;

determining at the responsible node an array of the arrays;

routing the request from the responsible node to the array

of the arrays.

17. The method of claim 6 wherein writes to an object are
stored in a journal.

18. The method of claim 6 wherein a file system is layered
over the scalable set of indexed key-value pairs to provide file
access to the objects of the objects of the scalable set of
indexed key-value pairs.

19. The method of claim 7 wherein the current state of an
object is given by the object and any writes appended to the
object.

